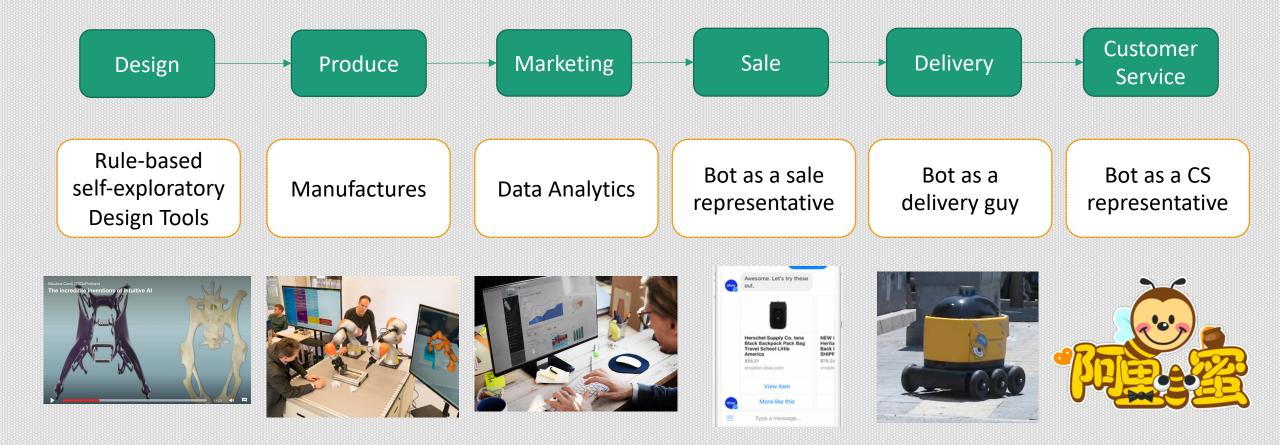
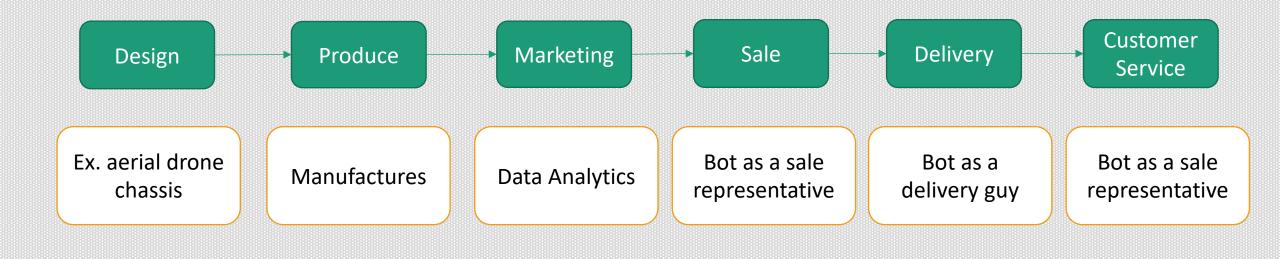
### Human-Al Hybrid and Some Observations in E-Commerce


Xinyu Fu

July 11, 2019


Harvard Summer School – MGMT S-5010 xinyu.fu@pitt.edu



### Examples: from back-end to front-end



### Examples: from back-end to front-end



Audience: employees  $\rightarrow$  consumers

**Higher interaction level** 

Higher humanoid level

| AI Techni | iques |
|-----------|-------|
|-----------|-------|

| TT |    | 1 |   |   |   |   |
|----|----|---|---|---|---|---|
|    | se | C | a | S | e | S |

|                     | AI Techniques                                                                                                                                                       | Use Cases                                                                                                                                                                                                           |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                     | Machine Learning: Field of study that gives computers<br>the ability to learn without being explicitly programmed                                                   | <ul> <li>Customer Churn Management</li> <li>Customer Segmentation</li> <li>Sentiment Analysis</li> <li>Fraud Detection</li> </ul>                                                                                   |
| 2                   | Neural Network: Used to estimate or approximate functions that can depend on a large # inputs and are generally unknown                                             | <ul> <li>Forecasting</li> <li>Classification of samples</li> <li>Function approximation</li> <li>clustering</li> </ul>                                                                                              |
| 3 Computer Vision   | <b>Computer Vision:</b> Acquiring, processing, analyzing & understanding images (high-dimensional data) from real world to produce numeric info                     | <ul> <li>Credit card scanner (in Uber app)</li> <li>Autonomous car</li> <li>OCR in ATM check deposits</li> <li>Face detection, Panoramic view, HDR images on smartphone.</li> </ul>                                 |
| 4                   | <b>Signal Processing:</b> Processing or transferring information contained in various physical, symbolic, or abstract formats designated as signals.                | <ul> <li>Psycholinguistics</li> <li>Mining (e.g. electroencephalogram)</li> <li>Speech processing</li> <li>Video / image processing</li> </ul>                                                                      |
| 5                   | Natural Language Processing (NLP) : Field of computer science,, and computational linguistics concerned with the interactions between computer & human languages    | <ul> <li>Social media sentiment analysis</li> <li>Machine Translation</li> <li>Question Answer Systems</li> <li>Personal Assistants - Siri</li> <li>Web Search</li> </ul>                                           |
| 6                   | <b>Metaheuristics</b> : Higher-level procedure to select or generate a heuristic to solve optimization problem, with imperfect info or limited computation capacity | <ul> <li>Agricultural land use optimization</li> <li>Ground traffic optimization</li> <li>Air traffic management</li> <li>Vehicle routing optimization</li> </ul>                                                   |
| OPERATIONS          | <b>Operations Research</b> : A discipline that deals with the application of advanced analytical methods to help make better decisions                              | <ul> <li>Real-Time Optimization (RTO)</li> <li>Sales &amp; Operations Planning</li> <li>Marketing Campaigns</li> <li>Economic production cycle design</li> </ul>                                                    |
|                     | Quantum Computing: Computation systems making use<br>of quantum mechanical phenomena, such as superposition<br>& entanglement to perform operations on data         | <ul> <li>SW verification and validation</li> <li>Drug discovery</li> <li>Cybersecurity</li> <li>Any problems too difficult to address with silicon computing</li> </ul>                                             |
| 9                   | <b>Cognitive Computing:</b> Simulation of human thought processes that involve self-learning systems using data mining, PR &NLP to mimic the way human brain works. | <ul> <li>Patient treatments &amp; clinical trials</li> <li>Stock pick recommendations based on Twitter feeds</li> <li>Analysis of customer behavior to target content at point-of-sale</li> </ul>                   |
| Pattern Recognition | Pattern Recognition : Recognition of patterns and regularities in data, although in some cases considered to be nearly synonymous with m/c learning                 | <ul> <li>Recognize handwritten zip codes</li> <li>Spoken word recognition</li> <li>Disease recognition from a list of symptoms</li> <li>Fingerprint recognition</li> <li>White blood cell classification</li> </ul> |

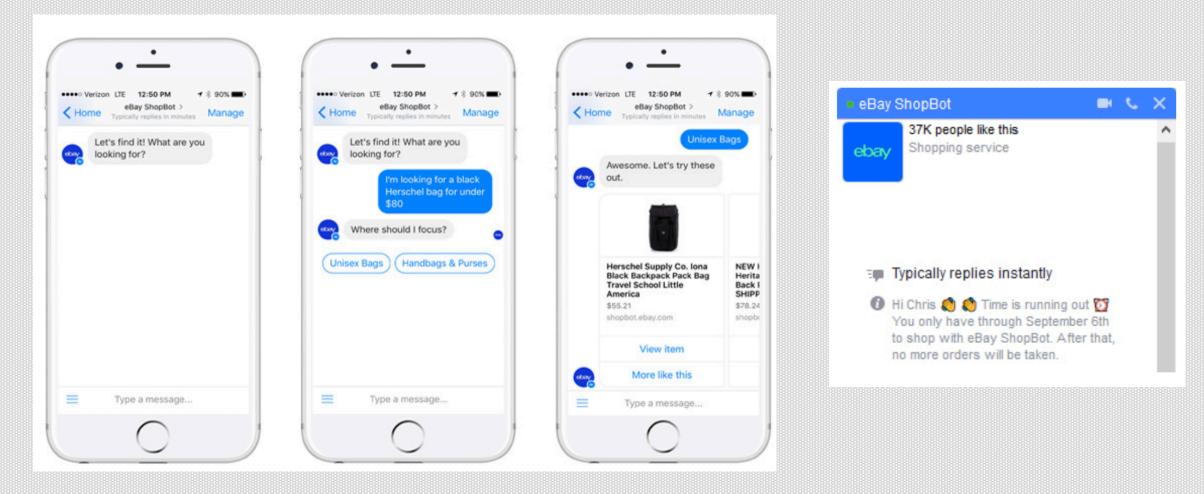
# Techniques behind

- Beyond data analytics:
- Unstructured data:
  - Text → natural language processing
  - Image → computer vision
  - Audio & video

Source: https://akshinthalakk.com/2016/05/30/artificialintelligence-techniques-use-cases/

### Comment Moderation – Google's Perspective API

| Perspective                         | Support Blog Get started |
|-------------------------------------|--------------------------|
|                                     |                          |
| Trusted for improving conversations |                          |
| The New York Times                  | DISQUS                   |
| EL PAÍS                             | The Coral Project        |
| ELPAÍS                              | The Coral Project        |


# Alibaba's Alime Bot Rep

Al chatbot behind Alibaba's \$31 billion Single's Day sales miracle

- Night time
- 100% response rate to consumers, 1-1
- New job positions: AliMe trainer

- data center robot Halo-Explorer executed 30% of the routine tasks.
- CS assistant Alime took 95% of customer service consultations on the day of the shopping festival.
- smart warehouse robots shipped more than 1 million packages in a single day.
- Al designer Luban designed 410 million product posters during the shopping festival.
- Alibaba intelligent recommendation system generated more than 56.7 billion exclusive "shelves" for users, providing users with personalized service experience.

# Ebay's Shopbot – But failed, becomes ShopNOT after 2 years trial



# Last mile delivery – by bot

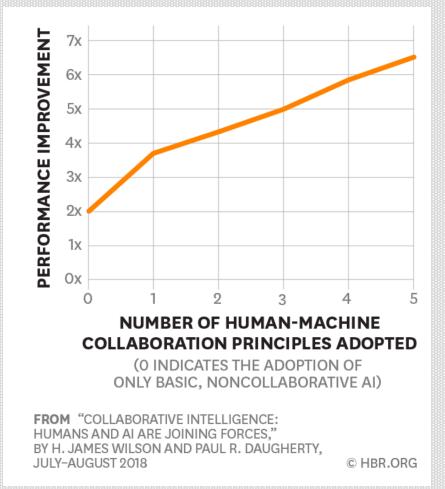
- Meituan auto piloted delivery cars
- <u>https://www.youtube.com/watch?v=5wxgQVjDviQ</u> (01:07')
  - Same building
  - Elevator-communication systems
- Similarly: Amazon, JD.com, etc.



# Human are involved in all of those process:

 human intelligence and AI each have their own strengths and weaknesses (Wilson, Daugherty, 2016).

#### Machines


- Accurate
- Reliable
- Scalable
- efficient

#### Humans

- creative activities
- cognitive analysis
  - Reasoning
  - Inference
  - making instinct judgments

# Human-Al hybrid

- Hybrid Human–Artificial Intelligence (H-AI), human-computer collaboration, human-computer symbiosis
- Human-AI hybrid is to integrate the strengths and mitigate the weaknesses of human intelligence and Artificial intelligence to achieve a shared goal



### Roles for machines relative to humans in humanmachine groups - for coordination work

| Туре      | Description                                                                                     |
|-----------|-------------------------------------------------------------------------------------------------|
| Tool      | Human directly control machines. Machines take no initiative.                                   |
| Assistant | Machines sometimes take initiative and try to anticipate what humans might want or be helped by |
| Peer      | Machines work alongside humans, doing what humans do                                            |
| Manager   | Machine organize, evaluate, and direct human work                                               |

(KIM, GUPTA, GLIKSON, WOOLLEY, MALONE, 2018)

### Roles for machines relative to humans in humanmachine groups (based on Kim et al., 2018)

|                                 | Proact                                                                                                                                             | ive                                                                                                                        |                                 |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| CANNOT                          | Assistant: decision<br>support systems<br>Machines sometimes take<br>initiative and try to anticipate<br>what humans might want or be<br>helped by | Manager: TBE<br>Machine organize,<br>evaluate, and direct<br>human work                                                    | CAN                             |
| Complete a task<br>individually | Tool: auto-design<br>bot; manufactures<br>Human directly control<br>machines. Machines take no<br>initiative.                                      | Peer:<br>Customer service<br>chatbot, sale bot,<br>delivery bot<br>Machines work alongside humans,<br>doing what humans do | Complete a task<br>individually |

Reactive

# Some interesting questions (individual level)

- Bot as manager
- Concerns:
  - Mindless adoption of what bot suggested (Robinette, et al., 2016)
  - Risk aversion to adjusting the systems
  - Bias embedded in the algorithms

### Bot as Manager – which one would you prefer?



- Bot as a manager  $\rightarrow$  employees
- Bot as a manager  $\rightarrow$  a human manager  $\rightarrow$  employees

## Listen to bot or not? (Robinette, et al., 2016)



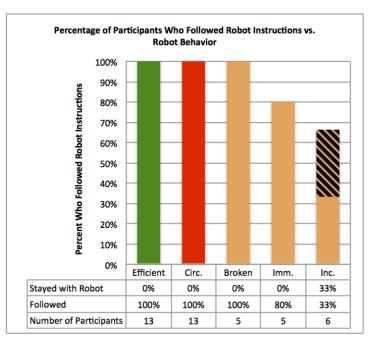
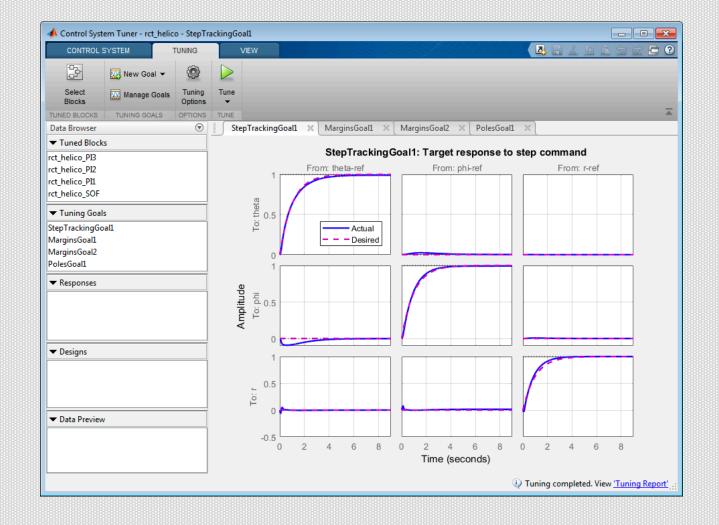




Figure 4. Results from the main study (green and red bars) and exploratory studies (orange bars) discussed in the next section.

### Adjust or not? – parameter tuning



### Feed it or not? – bias vs. accuracy



### Discussion

- How robots can be used in your industry?
  - As a tool
  - As an assistant
  - As a peer
  - As a manager
- What are some benefits and challenges?